Systems Approaches to Obesity Prevention: What does this actually mean?

Boyd Swinburn
Professor of Population Nutrition and Global Health
University of Auckland

Alfred Deakin Professor
Global Obesity Centre
Deakin University

ANA Conference, Wellington, May 2017
Outline

• Pre-systems thinking approaches to obesity prevention
 – G1 Package Testing, G2 Capacity Building
 – Signs of systems change

• Systems thinking and tools

• First at-scale application (G3) – Healthy Together Victoria
 – Promise, progress, demise, lessons, parallel & subsequent approaches

• New Zealand context
 – Healthy Families NZ
 – Regional efforts
 – Indigenous approaches
 – Research programs

• Future directions
Most short term
Some successful, some not
Overall reduces BMI
Very few sustained

Waters et al Cochrane Library 2011
Cochrane 2011 meta-analysis

Pre-school children

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Std. Mean Difference IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.1.1 0-5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo-Suwan 1998 (1)</td>
<td>-0.35</td>
<td>1.23</td>
<td>82</td>
<td>-0.44</td>
<td>1.06</td>
<td>88</td>
<td>2.1%</td>
<td>-0.10 [-0.21, 0.00]</td>
<td>1998</td>
</tr>
<tr>
<td>Mo-Suwan 1998 (2)</td>
<td>0.07</td>
<td>0.05</td>
<td>65</td>
<td>-0.33</td>
<td>0.59</td>
<td>57</td>
<td>1.7%</td>
<td>-0.30 [-0.66, 0.06]</td>
<td>1998</td>
</tr>
<tr>
<td>Harvey-Karlo 2003 (3)</td>
<td>0.27</td>
<td>0.52</td>
<td>17</td>
<td>0.51</td>
<td>0.7</td>
<td>20</td>
<td>9.7%</td>
<td>-0.91 [-1.59, -0.23]</td>
<td>2005</td>
</tr>
<tr>
<td>Dennison 2004</td>
<td>0.26</td>
<td>1.64</td>
<td>43</td>
<td>0.12</td>
<td>1.75</td>
<td>34</td>
<td>1.3%</td>
<td>-0.21 [-0.66, 0.24]</td>
<td>2004</td>
</tr>
<tr>
<td>Fergithon 2005</td>
<td>0.05</td>
<td>0.87</td>
<td>174</td>
<td>0.14</td>
<td>0.68</td>
<td>185</td>
<td>2.7%</td>
<td>-0.15 [-0.54, 0.24]</td>
<td>2005</td>
</tr>
<tr>
<td>Kooij 2006</td>
<td>0.09</td>
<td>0.92</td>
<td>432</td>
<td>-0.02</td>
<td>0.90</td>
<td>434</td>
<td>0.8%</td>
<td>-0.21 [-0.65, 0.23]</td>
<td>2000</td>
</tr>
<tr>
<td>Fitzgibbon 2006</td>
<td>0.11</td>
<td>1.54</td>
<td>198</td>
<td>0.13</td>
<td>1.5</td>
<td>187</td>
<td>2.7%</td>
<td>-0.01 [-0.21, 0.19]</td>
<td>2006</td>
</tr>
<tr>
<td>Cellier 2009 (4)</td>
<td>-0.15</td>
<td>0.23</td>
<td>49</td>
<td>0.11</td>
<td>0.23</td>
<td>134</td>
<td>1.8%</td>
<td>-1.13 [-1.47, -0.78]</td>
<td>2009</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>862</td>
<td>953</td>
<td>15.9%</td>
<td>-0.26 [-0.53, 0.00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.11$; $\chi^2 = 42.80$, df $= 7$ ($p < 0.000001$); $I^2 = 89$

Test for overall effect: $Z = 1.24$ ($p = 0.22$)

Adolescents

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Std. Mean Difference IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.1.3 13-18 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neumark-Stzainer 2003 (23)</td>
<td>-0.96</td>
<td>3.22</td>
<td>84</td>
<td>0.75</td>
<td>2.59</td>
<td>106</td>
<td>2.1%</td>
<td>-0.39 [-0.88, -0.00]</td>
<td>2003</td>
</tr>
<tr>
<td>Williamson 2006</td>
<td>0.73</td>
<td>2.8</td>
<td>18</td>
<td>1.2</td>
<td>3.05</td>
<td>22</td>
<td>0.9%</td>
<td>-0.16 [-0.78, 0.47]</td>
<td>2006</td>
</tr>
<tr>
<td>Singh 2009 (24)</td>
<td>0.5</td>
<td>1.57</td>
<td>312</td>
<td>0.5</td>
<td>1.55</td>
<td>308</td>
<td>2.9%</td>
<td>0.00 [-0.18, 0.18]</td>
<td>2009</td>
</tr>
<tr>
<td>Pedra 2009 (23)</td>
<td>0.3</td>
<td>1.56</td>
<td>19</td>
<td>0.0</td>
<td>1.63</td>
<td>16</td>
<td>0.7%</td>
<td>-0.16 [-0.53, 0.24]</td>
<td>2009</td>
</tr>
<tr>
<td>Singh 2009 (24)</td>
<td>0.4</td>
<td>1.22</td>
<td>275</td>
<td>0.4</td>
<td>1.33</td>
<td>214</td>
<td>2.8%</td>
<td>0.00 [-0.27, 0.27]</td>
<td>2009</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>706</td>
<td>586</td>
<td>9.4%</td>
<td>-0.17 [-0.41, 0.08]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.01$; $\chi^2 = 13.55$, df $= 4$ ($p = 0.010$); $I^2 = 70$

Test for overall effect: $Z = 1.33$ ($p = 0.18$)

Waters et al Cochrane Library 2011
<table>
<thead>
<tr>
<th>Location</th>
<th>Age Range</th>
<th>Years</th>
<th>Effect</th>
<th>Factors</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geelong</td>
<td><5s</td>
<td>2004-’08</td>
<td>↓ 1.8% (2y/o) & 2.7% (3.5y/o) over 3 y</td>
<td>$100k for 12,000 children, Δ behaviours and environments, Δ state prevalence</td>
<td>(de Silva-Sanigorski Am J Clin Nutr 2010)</td>
</tr>
<tr>
<td>Colac</td>
<td>4-12y</td>
<td>2002-’06</td>
<td>↓ ~1kg, 3cm waist over 3 y</td>
<td>Greater effect in lower SES children, No Δ ‘safety measures’</td>
<td>(Sanigorski et al Int J Obesity 2008)</td>
</tr>
<tr>
<td>(E Geelong)</td>
<td>13-18y</td>
<td>2004-’08</td>
<td>↓ 5.8% prevalence over 3 y</td>
<td>Δ community capacity, Δ in school environments, No Δ behaviours</td>
<td>(Millar et al Obes Rev 2011)</td>
</tr>
</tbody>
</table>
Pacific OPIC study outcomes

% overweight/obese

Baseline
Follow-up

Australia
Fiji - Indigenous
Fiji - Indian
New Zealand
Tonga

*
Investment during & after a 3y intervention program in Colac (vs comparison region)

Swinburn et al Ped Obesity 2014
Changes in overweight & obesity prevalence

Swinburn et al Ped Obesity 2014
Other Australian community-based interventions

• ‘Scale-up’ to 5 communities
 – Bogged down in individual contracting procedures by Vic govt
 – Little scope for local ownership and innovation
 – Shorter time-scale and not effective in reducing obesity

• Metropolitan, multi-cultural intervention
 – Added complexities
 – Relatively ineffective in reducing obesity
Pre-systems thinking approaches

- Interventions were systems building blocks
- Organisational argy-bargy: an important sign of systems change
- Quasi-experimental designs & standard epi tools were used
- Low cost interventions eg policies, training
- ‘Obesity prevention virus’ spreading along networks
- Limitations
 - Not sufficiently effective in non-white communities (indigenous & migrant)
 - Not culturally-centred
 - Govt-managed ‘scale-up’ inadequate
- Systems: at-scale, aligned with cultural perspectives, sustainable
What does a systems approach mean?

- Considering the whole as well as the parts
- Connections, networks, interdependence
- Rules and boundaries
- Dynamics:
 - Feedback loops, delays, non-linear effects, tipping points
- Complexity, adaptability, self-organising
- Patterns and emergence
Agent-based Modeling
“bottom up”
Actors & rules

System Dynamics
“top down”
Stocks & flows

Network Analysis
Nodes &
ties among them
Adding the dynamics

Table 1. The Ecological Model

Ecological model

Causal loop diagram
"And that's why we need a computer."
What does it mean for evaluation?

• **Intervention characteristics:**
 – Complex, at-scale, adaptable, evolutionary
 – Designed and implemented locally
 – Heterogeneous in type and dose

• **Evaluation design**
 – Null hypothesis testing may not be possible
 – Explaining heterogeneity may be better
 – Answering ‘how’ questions
 – Monitoring vs surveys

• **Use of system tools**
Healthy Together Victoria

Comprehensive health promotion initiative targeting 14 local government areas

Including:
- 938 early childhood centres
- 520 schools
- 4,409 workplaces and
- over 1.3 million Victorians
- 150 new positions in LGAs

A systems approach to chronic disease prevention
Healthy Together Victoria

- Investment in a systems-based approach through local government
- Injection of capacity into 12 sites (~120 FTE)
- 2 years planning, 3 years intervention, change in govt, prevention defunded
- ‘Prevention virus’ spreading after 3 years
- Non-HTV sites stimulated by HTV activity started their own action
- Little engagement with primary care
- Weak evaluation
- Communities now getting activated
SYSTEMS SCIENCE: APPROACHES AND TOOLS
Group Model Building

- Uses system dynamics to develop a causal map/diagram
- Community driven participatory research—core modeling team
- Start with ‘Changes over time’ with ‘Hopes and fears’
Example: Portland Victoria
37 variables / relationships to start quantifying the model

CLD v4 – nutrition: food prepared in ECEs
Networks, ‘Knowledge’ and ‘Engagement’

• What flows over networks to stimulate change (community action to prevent obesity)?
• Retrospective analysis from 2 successful programs
• ‘Knowledge’
 – Knowing & understanding the problem, how to intervene, how to contribute, what is being done, how to mobilise resources
• ‘Engagement’
 – Level of participation, dialogue/mutual learning, flexibility, influence/power, leadership, passion, trust
Knowledge

The problem of overweight
What level to intervene / determinants
How to intervene / sustainability
Your role / what others are doing
Available resources
Engagement 1

Degree of engagement

1. Not engaged
2. Engaged a little
3. Somewhat engaged
4. Quite engaged
5. Very engaged

Not at all capable
Not very capable
Somewhat capable
Capable
Very capable

Flexibility

Dialogue and mutual learning
Engagement 2

- **Degree of influence / power**: Neutral
- **Leadership / passion**: Strongly Agree
- **Mutual trust**: Neutral

Scale:
- 1: Strongly disagree
- 2: Disagree
- 3: Neutral
- 4: Agree
- 5: Strongly Agree
Types of social network analyses

Sociometric

Ego-centric
Ego networks with affiliations, directions, strength

- 19 participants
- 288 connections wrt childhood obesity
- 17 primary affiliations
- 18 median connections
Heterophily – discussions in same or different organisations

Discussion topics

- Sleep
- Screen time
- Overweight
- Growth & dev
- Active play, movt
- Food / nurtition
Collective Impact Cascade

<table>
<thead>
<tr>
<th>Stage</th>
<th>Authorising</th>
<th>Conceptualising</th>
<th>Validating/formulating</th>
<th>Actioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who is involved</td>
<td>CEO level</td>
<td>Managers & leaders (Steering Group)</td>
<td>Staff, parents, volunteers</td>
<td>Those with the remit, interest & capacity</td>
</tr>
<tr>
<td>Systems tools</td>
<td>Presentations on systems nature of problem & solutions</td>
<td>Group Model Building workshops</td>
<td>Critique of Causal Loop Diagrams & systems solutions</td>
<td>Communications aligning actions to system objectives</td>
</tr>
</tbody>
</table>

Common agenda
Ensure shared understanding of the problem and vision for change is agreed for each stage of the cascade.

Shared measurements
Ensure consistent data on problems (child obesity, behaviours) and solutions (eg policy implementation, settings’ food environments) are collected.

Mutually reinforcing activities
Ensure participant activities are differentiated yet coordinated through a mutually reinforcing plan of action relevant for each stage of the cascade.

Continuous communications
Ensure consistent and open communication across the many players to build trust, assure mutual objectives, and create common motivation.

Backbone organisation
Ensure an organization with appropriate staff & skills serves as the backbone for the initiative and coordinates participating organizations and agencies.
Healthy Families NZ

- Other national and regional activities eg
 - Fruit in schools
 - Healthy Auckland Together, Healthy Christchurch
 - Project Energize
• Regional PH service provides backbone support
• All major Auckland organisations participating
• 1 year – joining up, learning about each other, developing plans, obtaining mandates etc
• Injected $$ = 3 Healthy Families NZ sites, ARPHS
• Challenges
 – Undertaking systems change across the region using existing resources
 – Measuring the impacts of the efforts

http://www.healthyaucklandtogether.org.nz/
Indigenous approaches to obesity prevention
The FoodBack System

Information

Central database

Community members

Short feedback loops

Healthier community food places

Change agents

Long feedback loops

Information and short feedback loops = Food data, pictures, location data, best practice stories, comments

Long feedback loop = Analyses, badges, best practice benchmarks
Strengths of systems approaches

1. Engagement
 - Creating joint understandings of the problems and solutions
 - Group Model Building

2. Truer picture of the problem
 - Embracing the complexity
 - Using the dynamics
 - More tools for understanding and evaluations

3. Levels of intervention
 - Variables
 - Relationships
 - Rules, goals
Conclusions

• Shift to systems thinking is a step change for obesity prevention
• Still understanding how to communicate it, apply it, and measure it
• Need to exploit the spread of the ‘prevention virus’ and ‘community bootstrap’ processes
• Need systems tools as well as linear null hypothesis testing tools (G1-G3)
• Population monitoring data is essential
• Pool our lessons and create preventions systems for NZ